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Estimating meteorological drought parameters such as severity, duration, and frequency to devise appropriate
mitigation strategies is a complex task due to the intricate relationships between these parameters. This
study compares Standardized Precipitation Evapotranspiration Index (SPEI) values from observed data and
ERA5 reanalysis data at four stations in Saurashtra—Amreli, Junagadh, Jamnagar, and Targhadia—across
seven-time scales (monthly, three-monthly, and seasonal). Using three comparison methods—Pearson
correlation, historical seasonal drought severity, and drought frequency analysis. The correlation coefficients
between observed and ERA5 data for the Standardized Precipitation Evapotranspiration Index (SPEI) show
strong relationships across all time scales for the four Saurashtra stations. ERA5 performs best at longer
time scales, with the highest correlations observed at the 6-month (SPEI6) scale, where it closely aligns with
observed drought conditions. These findings suggest that ERA5 is particularly effective for capturing long-
term drought trends, although its accuracy may improve with further calibration for short-term predictions.
The observed and ERA5 data generally align in capturing broader wet and dry periods, despite occasional
discrepancies in specific years, likely due to variations in data sources, modelling, or regional climate. ERA5
provides a good approximation of drought conditions in Saurashtra, especially in identifying “No Drought”
and Severe Drought periods, though there are slight differences in Mild and Moderate Drought classifications.
These variations suggest that ERA5 is sensitive to short-term fluctuations and can be useful for regional
drought monitoring with minor adjustments for local conditions. It was found that ERA5 data closely aligns
with observed data, providing reliable insights into drought conditions. The results highlight ERA5’s
potential for operational drought monitoring, crop yield prediction and other applications, especially in
regions with limited ground-based data.
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ABSTRACT

Introduction
Drought is a recurrent natural disaster and climate

extreme that significantly impacts humans, ecosystems,
and the environment. It often begins as meteorological
drought, marked by insufficient rainfall and high
evapotranspiration rates. This then leads to agricultural
drought, characterized by soil moisture depletion and
reduced crop yields, followed by hydrological drought,
which affects surface and groundwater supplies and
finally socio-economic drought, causing economic losses
and social distress.

Several indices are available to characterize
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meteorological droughts in terms of severity, duration,
intensity and frequency, while also linking them to
agriculture and water resources. Many commonly used
meteorological drought indices, such as the Standardized
Precipitation Index (SPI) (McKee et al., 1993), Rainfall
Anomaly Index (RAI) (Van Rooy, 1965), Drought Area
Index (DAI) (Bhalme and Mooley, 1980), Decile Index
(DI) (Gibbs and Maher, 1967), Percent of Normal
Precipitation Index (PNPI) (Willeke et al., 1994), Z-Score
and China Z Index (CZI) (Ju et al., 1997), rely solely on
rainfall as their primary parameter.

Since the rainfall based indices does not account for
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changes in other climate variables, such as surface air
temperature, it has a limitation in fully reflecting the
effects of climate change (Won et al., 2020). To address
this, the Standardized Precipitation Evapotranspiration
Index (SPEI) was developed by Vicente-Serrano et al.
(2010) include not only rainfall (supply) but also the
climatic water demand by incorporating potential
evapotranspiration (ETo). The SPEI retains all its
advantages of SPI which is additional information on and
potential evapotranspiration and hence gaining popularity
in drought quantification (Adarsh et al., 2018). In the
Saurashtra region of Gujarat, India, Pandya et al. (2022)
showed that SPEI was better corrected with crop yields
of cotton and groundnut  as compared to other indcies
(Pandya, 2023) and it was better linked to agricultural
drought (Pandya et al., 2022). Pandya et al. (2023) also
developed drought severity-duration-frequency curves for
the Saurashtra region using the Standardized Precipitation
Evapotranspiration Index (SPEI).

Gathering information from numerous meteorological
stations across a large region like Saurashtra on a monthly
and timely basis is not practically feasible. Therefore,
the use of open-source climatic data with high spatial
and temporal resolution and extensive spatial and temporal
coverage, with minimum latency, becomes essential.

In many regions, including large areas of India, the
density of ground-based rain gauges is insufficient to
capture the spatial and temporal variability of rainfall.
This results in significant data gaps, making it challenging
to monitor weather patterns, manage water resources
and predict agricultural yields. In India, for instance, areas
such as Gujarat and Rajasthan suffer from lower rain
gauge densities, hindering accurate rainfall monitoring and
drought condition assessments. The Bureau of Indian
Standards (BIS) recommends specific rain gauge
densities based on geographic features, but in rural and
remote areas, rain gauge networks are often
underdeveloped or poorly maintained, leading to
discrepancies between ground-based data and actual
conditions.

To address these challenges, several platforms
provide access to climate-related data, including IMD
Gridded data, NASA POWER, CHIRPS and ERA5,
produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF). Comparing open-source
data products like ERA5 with observed station data is
particularly important in regions with sparse rain gauge
networks. ERA5, with its high spatial resolution of
approximately 31 km and global coverage, offers a reliable
solution by filling these data gaps with consistent and
accurate climate information. Unlike other data products

that may take several months to become available, ERA5
reanalysis data is accessible within a week, making it
particularly valuable for time-sensitive applications.

ERA5 has been successfully used in operational
drought monitoring tools and SPEI (Standardized
Precipitation Evapotranspiration Index) calculations, as
demonstrated by researchers such as Saha et al. (2021),
Vicente-Serrano et al. (2022) and Santini et al. (2023).
Its hourly estimates of precipitation and other climatic
variables provide detailed information that complements
sparse ground station data, improving the accuracy of
climate and hydrological modeling. This is especially
useful in areas with complex topographies, such as hilly
or coastal regions, where local weather patterns may not
be captured by existing rain gauge networks. In
Saurashtra, for example, where rain gauge coverage is
limited, ERA5 can help generate more accurate
predictions of drought conditions, water availability, and
crop yields.

Open-source data products like ERA5 also
democratize access to high-quality climate data, which is
often costly or inaccessible in developing countries. By
providing free access to high-resolution climate data,
ERA5 ensures that researchers, policymakers, and
farmers in regions with low rain gauge densities can make
informed decisions. Furthermore, ERA5’s integration of
data from satellites, ground stations and other sources
improves the overall reliability and consistency of the data,
making it a valuable resource for global climate and
hydrological studies.

Comparing ERA5 with observed station data is crucial
for validating the effectiveness of open-source data
products in areas with limited ground-based monitoring.
ERA5’s ability to provide high-resolution, hourly climate
data offers a powerful tool for overcoming the challenges
posed by sparse rain gauge networks. By leveraging global
datasets like ERA5, it is possible to enhance drought
monitoring, water resource management, and agricultural
planning, particularly in regions like Saurashtra where
rain gauge coverage is inadequate. Open-source data
products like ERA5 play a vital role in improving the
accuracy and reliability of climate predictions, ultimately
contributing to better-informed decision-making in regions
with limited meteorological infrastructure (WMO, 2020;
Hersbach et al., 2020; Ramesh et al., 2021).

The main objective of the present study was to
compare observed stations and ERA5 based SPEI for
Saurashtra region of Gujarat. This comparison will help
improve the precision of drought monitoring, agricultural
planning and water resource management by filling
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significant data gaps with reliable and high-resolution
climate information and development of operation drought
monitoring systems.

Materials and Methods
Study area and data used

The present study was done in the Saurashtra region
of Gujarat, India. The Saurashtra region, located in the
westernmost part of Gujarat State, India, lies between
20º30' to 23º N latitude and 69º to 72º E longitude. Spanning
an area of 6.49 million hectares, it encompasses 11
districts. The region experiences a dry pre-monsoon
period, followed by the southwest monsoon rains, which
typically begin in mid-June and last between 20 to 37
days. Over 95% of the region’s annual rainfall occurs
between June and September. The climate is semi-arid
and subtropical, with limited irrigation facilities and no
perennial rivers. The present study was conducted using
four stations of Saurashtra Amreli, Junagadh, Jamnagar
and Targhadia (Fig. 1). The monthly rainfall and minimum
and maximum data was collected for above stations were
collected from two sources 1. Observed data of 1981 to
2023 (44 years) from June to November were collected
from four Research Stations of Junagadh Agricultural
University 2. ERA5 Reanalysis data downloaded

(Hersbach et al., 2020). The details of average monthly
observed rainfall of various stations are given in the Table
1.
Computation of SPEI

The SPEI computation method given by Vicente-
Serrano et al. (2010) is described below.

In the first step, Thornthwaite method (Thornthwaite,
1948) was used to estimate PET as shown in Equation
(1).
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N is the mean hours of sunshine
NDM is the number of days in a month
H in the above Equation is the heat index, which can

be calculated using Equation (2).
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T is the average temperature of each month in 0C.
m is a coefficient used whose value depends on H.
The coefficient m can be obtained using Equation

(3).
m = 6.75 × 10–7 H3 – 7.71 × 10–5 H2 + 1.79 × 10–2 H
             + 0.492 (3)
The difference between monthly precipitation and

potential evapotranspiration is used for obtaining SPEI
as given in Equation (4).

Di = Pi – PETi (4)
Here, i represent the month. The D i values so

obtained are combined at various time scales. To
standardize the original series, the log-logistic distribution
function is applied following the approach of Vicente-
Serrano et al.  (2010). The probability density function
used for characterizing the log-logistic function is provided
in Equation (5).

Fig. 1 : Study Area map.

Table 1 : Average Monthly Rainfall (mm) of various Stations.

S. Station name June July August September
no.

1 Amreli 130 215 136 128

2 Junagadh 202 357 211 165

3 Jamnagar 92 250 156 109

4 Targhadia 111 253 151 128
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Here,  is the scale parameter,  is the shape
parameter and  is the origin parameter. Also,  > D < .
The distribution parameters were determined using the
L-moments procedure in Equations (6) to (8). The L-
moments method is considered an easy but robust method
(Ahmad et al., 1988).
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Here, [() is the gamma function of .
The D series follows the log-logistic distribution

whose probability distribution function is expressed in
Equation (9).
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Now, SPEI can be obtained using Equation (10)
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where,  PW ln2  for P  5 and P is the
probability of exceeding a determined D value. The
constants are C0 = 2.515517, C1=0.802853, C2= 0.010328,
d1=1.432788, d2=0.189269 and d3= 0.001308.

The Drought severity classifications of SPEI in terms
is given in Table 2.
Comparison of observed and ERA5 based SPEI

The SPEI was calculated for seven different time
scales, including four monthly intervals (June, July, August
and September), two three-month periods (June to August
and July to September), and one six-month period (June
to November, representing the seasonal scale). Three
methods were used for comparison: 1) Pearson

correlation between observed and ERA5-based SPEI
values, 2) Historical seasonal drought severity based on
the theory of run concept and 3) Drought frequency
analysis across various categories.

Results and Discussion
Correlation between observed and ERA5 based
SPEI

The correlation coefficients between observed and
ERA5 data for the Standardized Precipitation
Evapotranspiration Index (SPEI) for 1, 3 and 6 months
across four stations in Saurashtra—Amreli, Junagadh,
Jamnagar and Targhadia—reveal consistent relationships
between the datasets (Fig. 2). In general, the observed
and ERA5 data show strong correlations for all time scales,
with the highest correlations typically found in the 6-month
(SPEI6) time scale, followed by the 3-month (SPEI3)
and 1-month (SPEI1) scales. For instance, in Amreli, the
correlation between observed and ERA5 data for SPEI1
is 0.85, which rises to 0.94 for SPEI6, indicating that
ERA5 is particularly effective in capturing long-term
drought trends. Similar patterns are observed in the other
stations, with the correlation between ERA5 and observed
data improving for longer time scales.

In Junagadh, the correlation between observed and
ERA5 data is slightly lower than in Amreli, especially for
the 1-month scale, where it is 0.74. However, as the time
scale increases, the correlation strengthens, reaching 0.95
for SPEI6. This suggests that ERA5 is more reliable for
capturing longer-term drought conditions in Junagadh,
similar to what is observed in Amreli. Additionally, ERA5
appears to be slightly more sensitive to variations in the
3-month and 6-month time scales compared to the 1-
month scale. The pattern of correlation in Junagadh is
consistent with the other stations, where ERA5 tends to
perform better at longer time scales, capturing more of
the broader drought trends.

Table 2 : Drought severity classifications of SPEI.

Category SPEI

Extremely wet  2.0

Severely wet 1.5 to 1.99

Moderately wet 1.0 to 1.49

Mild wet 0.5 to 0.99

Near normal -0.49 to 0.49

Mild drought -0.5 to -0.99

Moderate drought -1.0 to -1.49

Severe drought -1.5 to -1.99

Extreme drought  -2.0
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In Jamnagar, the correlation between observed and
ERA5 data for the 1-month scale is 0.84, which is also
relatively strong but slightly lower than in Amreli. The
correlation strengthens significantly at the 6-month scale,
reaching 0.97. Similar to Junagadh, ERA5’s performance
is less reliable at the 1-month scale but improves with
longer time scales. This suggests that ERA5 can be an
effective tool for drought monitoring in Jamnagar,

particularly for longer durations, where it aligns well with
observed drought data. The consistency of ERA5’s
performance across all four stations indicates that it is
capable of tracking drought conditions, especially over
longer periods, but may require further calibration to
improve short-term drought predictions.

Targhadia follows a similar trend, with correlations
between observed and ERA5 data reaching 0.81 for
SPEI1, 0.94 for SPEI3 and 0.97 for SPEI6. The strongest
correlation is again observed at the 6-month time scale,
supporting the idea that ERA5 is better at capturing
longer-term drought events. The correlation coefficients
across all time scales indicate that ERA5 can reasonably
replicate observed drought patterns in Targhadia, with
the most reliable predictions occurring over extended time
frames. The performance of ERA5 in Targhadia is
consistent with the other stations, reinforcing the general
trend that ERA5 is more effective at capturing drought
conditions over longer periods.

  
 (a) Amreli (b) Junagadh

  
                (c) Jamnagar (d) Rajkot

Fig. 2 : Pearson Correlation Coefficient (r)  between observed
and ERA5 based SPEI for various stations.

Fig. 3 : Seasonal SPEI drought severities based on observed and ERA5 data for Amreli station.

Fig. 4 : Seasonal SPEI drought severities based on observed and ERA5 data for Junagadh Station.

Overall, ERA5 data can be reasonably used to capture
drought conditions in Saurashtra, especially for longer
time scales. While the correlation between ERA5 and
observed data is weaker at the 1-month scale, it improves
significantly at the 3-month and 6-month scales, making
ERA5 a useful tool for monitoring long-term drought
trends. The high correlations for the 3-month and 6-month
periods indicate that ERA5 effectively captures the



broader patterns of drought in the region. Therefore,
ERA5 data can be a valuable resource for drought
monitoring and forecasting in Saurashtra, though it may
be necessary to refine the model for short-term drought
predictions, especially for the 1-month scale.
Historic Drought Severities by Theory of Run

The Theory of Run is a hydrological framework used
to analyze historic drought severities by identifying and
quantifying drought episodes based on cumulative deficits
in variables like precipitation, soil moisture, or streamflow.
A drought “run” is defined as a sequence of values
consistently below a predefined threshold, with severity
measured as the cumulative deficit, duration as the length
of the run and intensity as the average deficit per time
step. Here, the drought severity thresholds used are given
in Table 2. This approach enables the detection of extreme
drought events, trends in frequency and persistence, and
localized impacts in specific regions, offering a robust
method for assessing past droughts. While sensitive to
threshold selection and requiring high-quality data, the
Theory of Run provides valuable insights into the nature
and impact of historic droughts, aiding in the development
of future resilience strategies.

The Seasonal SPEI drought severities based on
observed and ERA5 data for Amreli station is given in
Fig. 3. Upon comparing the observed and ERA5 data,
some notable patterns emerge. Generally, the two datasets
exhibit similarities in capturing the overall trend of wetter
or drier conditions for each year. For instance, in 1983,
both observed and ERA5 data show positive SPEI values,
indicating a wetter period. Similarly, in 1986 and 1987,
both datasets portray severe drought conditions with
negative SPEI values. However, discrepancies between
the observed and ERA5 data are evident in certain years.
Notable differences can be seen in 2004, where the
observed data reports a notably negative SPEI value,
indicative of drought, while the ERA5 data suggests a
wetter condition with a positive SPEI value. Another
instance is in 2010, where the observed data indicates
wetter conditions, while the ERA5 data suggests drier
conditions. Overall, while there are instances of
divergence in specific years, the observed and ERA5
data generally align in capturing the broader trends of
wetter and drier periods.

Upon examining the observed and ERA5 data for
Junagadh Station (Fig. 4), several patterns emerge.
Generally, both datasets show consistent trends in the
severity of drought or wet conditions for most years. In
1983, 2007, 2010 and 2020, both observed and ERA5
data indicate notably positive SPEI values, suggesting

wetter conditions. Conversely, in years like 1987 and 1998,
both datasets reflect negative SPEI values, signaling drier
conditions. However, discrepancies exist in certain years.
Notably, in 2004, the observed data reports a positive
SPEI value, indicating wetter conditions, while the ERA5
data suggests a drier situation with a negative SPEI.
Similarly, in 2014, the observed data indicates positive
SPEI, while the ERA5 data suggests a drier scenario.

Fig. 5 represents a comparison between observed
and ERA5 data for Jamnagar, focusing on Standardized
Precipitation Evapotranspiration Index (SPEI) values for
various years. SPEI quantifies the deviation of
precipitation and evapotranspiration from their long-term
averages, offering insights into drought or wet conditions.
Upon analyzing the observed and ERA5 data, both
datasets generally exhibit consistent trends in the severity
of drought or wet conditions for most years. In 1987,
1991 and 1999, both observed and ERA5 data indicate
notably negative SPEI values, suggesting drier conditions.
Conversely, in 2007, 2010 and 2019, both datasets reflect
positive SPEI values, signaling wetter conditions.

However, discrepancies exist in certain years.
Notably, in 2014, the observed data indicates a negative
SPEI, implying drier conditions, while the ERA5 data
suggests a less severe drought with a higher SPEI value.
Similarly, in 2008, the observed data suggests a drier
period, while the ERA5 data indicates a wetter condition.

Fig. 6 provides a comparison between observed and
ERA5 data for Traghadia, focusing on Standardized
Precipitation Evapotranspiration Index (SPEI) values for
various years. SPEI quantifies the deviation of
precipitation and evapotranspiration from their long-term
averages, offering insights into drought or wet conditions.
Upon analyzing the observed and ERA5 data, both
datasets generally exhibit consistent trends in the severity
of drought or wet conditions for most years. In 1983,
2004, 2007, 2010 and 2019, both observed and ERA5
data indicate notably positive SPEI values, suggesting
wetter conditions. Conversely, in 1985, 1986 and 1991,
both datasets reflect negative SPEI values, signaling drier
conditions. However, discrepancies exist in certain years.
Notably, in 1994, the observed data indicates a positive
SPEI, implying wetter conditions, while the ERA5 data
suggests a less severe wet period with a lower SPEI
value. Similarly, in 2001, the observed data suggests a
wetter period, while the ERA5 data indicates a drier
condition.

Overall, the observed and ERA5 data generally align
in capturing the broader trends of wetter and drier periods,
despite instances of divergence in specific years. These
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differences may result from variations in data sources,
modeling approaches, or regional climate characteristics.
The comparison highlights the importance of using multiple
datasets to account for uncertainties and enhance the
reliability of drought assessments, particularly for specific
regions like Saurashtra.
Drought Frequency under various categories by
observed and ERA5 data

The seasonal drought severities comparison was
given in previous section. Here with drought frequency
under various classes such as no drought or mild/
moderate/severe or extreme drought is discussed. Figs.
7 to 10 present drought frequencies across various
categories for four stations in Saurashtra—Amreli,
Junagadh, Jamnagar, and Targhadia—based on the
Standardized Precipitation Evapotranspiration Index

(SPEI) for different time scales (1, 3 and 6 months).
Both observed data and ERA5 reanalysis data are
provided, and the comparison highlights the consistency
and differences between these two sources. The general
trend across all stations shows “No Drought” as the
dominant category, with most variations observed in the
Mild and Moderate Drought categories, where ERA5
data sometimes deviates from the observed data.

In Amreli, the drought classification shows a good
overall alignment between the observed and ERA5
datasets, with “No Drought” being the most common
classification in both datasets. However, in the Mild
Drought category, ERA5 tends to slightly under represent
instances compared to the observed data in some months,
especially in June and July. The Moderate Drought
category also exhibits some variations, with ERA5

Fig. 5 : Seasonal SPEI drought severities based on observed and ERA5 data for Jamnagar Station.

Fig. 6 : Seasonal SPEI drought severities based on observed and ERA5 data for Targhadia Station.

Fig. 7 : Drought frequency under various drought categories for observed and ERA5 based SPEI for Amreli station.
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showing slightly fewer occurrences. Severe and Extreme
Droughts are rare in both datasets, with ERA5 slightly
overestimating them in some periods. Overall, ERA5 can
reasonably capture the trends observed in Amreli but
slightly underestimates the frequency of mild drought
conditions.

Junagadh shows a somewhat different pattern,
particularly in the Severe Drought category. ERA5 data
reports more instances of Severe Drought, especially in
July and September, where the observed data shows
significantly fewer occurrences. Similarly, the Mild
Drought category is over represented in ERA5 for several
months, such as in June and September. However, for
the “No Drought” category, both datasets align well, with
only minor differences. The Moderate Drought category

Fig. 9 : Drought frequency under various drought categories for observed and ERA5 based SPEI for Jamnagar station.

Fig. 10 : Drought frequency under various drought categories for observed and ERA5 based SPEI for Targhadia station.

Fig. 8 : Drought frequency under various drought categories for observed and ERA5 based SPEI for  Junagadh station.

shows some variation, with ERA5 data tending to report
slightly more instances than the observed data. Despite
these discrepancies, ERA5 still provides a reasonable
estimate of drought conditions in Junagadh, though some
adjustments might be needed to better capture the
frequency of Severe Drought.

Jamnagar exhibits notable differences between the
observed and ERA5 data, particularly in the Mild Drought
category, where ERA5 overestimates the frequency in
June and July. In contrast, the Moderate Drought category
is reported more frequently in the observed data,
particularly in August and September, while ERA5 tends
to report fewer instances. Severe Drought conditions are
relatively rare in both datasets, with ERA5 showing slightly
more occurrences in June and August. Despite these
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discrepancies, ERA5 captures the broader drought trends
in Jamnagar, though it may overestimate certain drought
categories and underrepresent others. ERA5’s higher
frequency of Mild Drought events, especially in June,
suggests that it may be more sensitive to precipitation
variability than the observed data.

Finally, Targhadia presents a relatively consistent
picture between observed and ERA5 data, with both
datasets agreeing on the dominance of “No Drought” in
all time scales. ERA5, however, tends to slightly
overestimate Mild Drought conditions, especially in June
and July. In contrast, the Severe Drought category is
consistent across both datasets, with rare occurrences
noted in both the observed and ERA5 data. The Moderate
Drought category shows slight variations, but overall,
ERA5 closely tracks the observed drought conditions in
Targhadia, with minor differences in the frequency of
Mild Drought events. The consistency in Targhadia
suggests that ERA5 can reasonably replicate drought
conditions for this station, but like other stations, slight
adjustments may be needed to fine-tune its predictions.

In conclusion, ERA5 reanalysis data provides a
reasonable approximation of the observed drought
conditions in Saurashtra across the four stations, especially
for capturing the broader trends in “No Drought” and
Severe Drought categories. While there are variations in
Mild and Moderate Drought classifications, ERA5
generally captures the major drought patterns observed
in the region. Minor discrepancies, particularly in the
frequency of Mild Drought, suggest that ERA5 may be
more sensitive to short-term fluctuations in precipitation
and evapotranspiration, making it a useful tool for
monitoring drought at the regional scale with some
adjustments for local nuances.

For countries like India, where approximately 70 to
90% of annual rainfall occurs during the southwest
monsoon (June to September) (Kumar et al., 2021),
drought characterization and monitoring are crucial. The
comparison between observed and ERA5 data for drought
categories across various months and cumulative periods
provides valuable insights into the agreement and
discrepancies between the two datasets. In general, the
observed and ERA5 data align closely, particularly in
reporting the absence of extreme drought events.
Discrepancies are evident in specific categories and
months, with ERA5 sometimes indicating more years with
mild to moderate drought while the observed data reporting
more severe drought years. The variations could stem
from differences in data sources, modeling techniques,
or regional climate nuances. Overall, the comparison

underscores the utility of ERA5 data but also highlights
the importance of considering observed data for localized
and accurate assessments of drought conditions. Further
investigation into the specific factors contributing to these
differences would enhance the understanding of the
reliability of each dataset in capturing historical drought
occurrences. The comparison between observed and
ERA5 (European Reanalysis) data across various months
and cumulative periods reveals some nuanced differences
and similarities in reported drought occurrences. Generally,
the observed and ERA5 data align closely in categories
such as severe and extreme drought, with both datasets
often reporting identical values. However, discrepancies
emerge in milder drought categories, with ERA5
occasionally reporting more years with drought compared
to observed data. This suggests that while both datasets
capture severe drought events effectively, there might
be variations in their representation of mild to moderate
drought conditions. Overall, the comparison demonstrates
that ERA5 can be effectively used for drought
characterization, the development of operational drought
monitoring systems, and applications such as crop yield
prediction.

Conclusion
The comparison of SPEI values from observed data

and ERA5 reanalysis data for four stations in Saurashtra—
Amrlei, Junagadh, Jamnagar and Targhadia—across
seven different time scales (monthly, three-monthly and
seasonal) demonstrated the effectiveness of ERA5 data
for drought characterization. Using three comparison
methods—Pearson correlation, historical seasonal drought
severity, and drought frequency analysis—it was found
that ERA5 data aligns closely with observed data,
providing reliable insights for drought monitoring. These
findings suggest that ERA5 data can be effectively used
for operational drought monitoring, crop yield prediction,
and other similar applications, offering a valuable
alternative, especially in regions with sparse ground-based
data.
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